Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Hematol Oncol ; 17(1): 30, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711100

RESUMO

As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.


Assuntos
Adenosina , Adenosina/análogos & derivados , Neoplasias , Bibliotecas de Moléculas Pequenas , Humanos , Neoplasias/tratamento farmacológico , Adenosina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Animais
2.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38613499

RESUMO

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Pirimidinas , Humanos , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Tiofenos/farmacologia , Tiofenos/síntese química , Tiofenos/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Linhagem Celular Tumoral , Descoberta de Drogas , Apoptose/efeitos dos fármacos , Feminino , Camundongos Nus , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
3.
J Med Chem ; 67(4): 2777-2801, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323982

RESUMO

Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
4.
Mol Cancer ; 23(1): 22, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262996

RESUMO

Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.


Assuntos
Autofagia , Neoplasias , Humanos , Autofagossomos , Núcleo Celular , Descoberta de Drogas
5.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172338

RESUMO

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Receptores CCR7/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Colesterol/metabolismo
6.
Eur J Med Chem ; 265: 116040, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142509

RESUMO

Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais , Ferroptose , Morte Celular Regulada , Humanos , Necroptose , Apoptose , Neoplasias Colorretais/tratamento farmacológico
7.
Acta Pharm Sin B ; 13(10): 4060-4088, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799384

RESUMO

Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.

8.
Front Oncol ; 13: 1046951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681026

RESUMO

Purpose: To develop and validate a three-dimensional ultrasound (3D US) radiomics nomogram for the preoperative prediction of extrathyroidal extension (ETE) in papillary thyroid cancer (PTC). Methods: This retrospective study included 168 patients with surgically proven PTC (non-ETE, n = 90; ETE, n = 78) who were divided into training (n = 117) and validation (n = 51) cohorts by a random stratified sampling strategy. The regions of interest (ROIs) were obtained manually from 3D US images. A larger number of radiomic features were automatically extracted. Finally, a nomogram was built, incorporating the radiomics scores and selected clinical predictors. Receiver operating characteristic (ROC) curves were performed to validate the capability of the nomogram on both the training and validation sets. The nomogram models were compared with conventional US models. The DeLong test was adopted to compare different ROC curves. Results: The area under the receiver operating characteristic curve (AUC) of the radiologist was 0.67 [95% confidence interval (CI), 0.580-0.757] in the training cohort and 0.62 (95% CI, 0.467-0.746) in the validation cohort. Sixteen features from 3D US images were used to build the radiomics signature. The radiomics nomogram, which incorporated the radiomics signature, tumor location, and tumor size showed good calibration and discrimination in the training cohort (AUC, 0.810; 95% CI, 0.727-0.876) and the validation cohort (AUC, 0.798; 95% CI, 0.662-0.897). The result suggested that the diagnostic efficiency of the 3D US-based radiomics nomogram was better than that of the radiologist and it had a favorable discriminate performance with a higher AUC (DeLong test: p < 0.05). Conclusions: The 3D US-based radiomics signature nomogram, a noninvasive preoperative prediction method that incorporates tumor location and tumor size, presented more advantages over radiologist-reported ETE statuses for PTC.

9.
J Med Chem ; 66(17): 12069-12100, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37616488

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors have been approved for the treatment of breast cancer (BC) with breast cancer susceptibility (BRCA) gene mutation. Leveraging new synthetic lethal interactions may be an effective way to broaden the indication of PARP inhibitors for BC patients with wild-type BRCA. Vascular endothelial growth factor receptor (VEGFR)-mediated suppression of angiogenesis has been reported to improve the sensitivity of wild-type BRCA cells to PARP inhibitors through synthetic lethality. Herein, we reported the conjugation of a PARP inhibitor with a VEGFR inhibitor pharmacophore to construct dual VEGFR and PARP inhibitors. The most potent compound 14b is identified to exert promising activities against VEGFR and PARP in the nanomolar range and possesses significant in vitro and in vivo antitumor and antimetastasis features. It also presented a favorable pharmacokinetic characteristics in rats with an oral bioavailability of 60.1%. Collectively, 14b may be a promising therapeutic agent of BRCA wild-type BC.


Assuntos
Neoplasias , Poli(ADP-Ribose) Polimerases , Animais , Ratos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Receptores de Fatores de Crescimento do Endotélio Vascular
10.
Eur J Med Chem ; 259: 115648, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478560

RESUMO

Triple negative breast cancer (TNBC) is one of the most aggressive breast tumors, with a high rate of recurrence and metastasis as well as a poor prognosis. Consequently, it is urgent to find new targeted therapeutic strategies and development of corresponding drugs. Previous studies have shown that CDK12 inhibitors in combination with PARP1 inhibitors is able to induce synthetic lethality in TNBC cells. Here, we reported simultaneously inhibition of CDK12 and PARP1 by genetic or pharmacological approaches synergistically inhibited the proliferation of TNBC cells. Then, a series of small molecule inhibitors targeting both CDK12 and PARP1 were designed and synthesized. The new dual-target inhibitor (12e) showed potent inhibitory activity against CDK12 (IC50 = 285 nM) and PARP1 (IC50 = 34 nM), as well as good anti-proliferative effects in TNBC cell lines. Meanwhile, compound 12e showed favorable synergistic anti-tumor efficacy in cells and xenografts by inhibiting DNA damage repair, promoting cell cycle arrest and apoptosis. Taken together, we successfully synthesized the first effective CDK12-PARP1 dual inhibitor, which is expected to be an attractive therapeutic strategy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Mutações Sintéticas Letais , Linhagem Celular Tumoral , Reparo do DNA , Proliferação de Células , Poli(ADP-Ribose) Polimerase-1/metabolismo , Quinases Ciclina-Dependentes/metabolismo
11.
Phytomedicine ; 117: 154907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295024

RESUMO

BACKGROUND: The diterpenoid alkaloids belong to a highly esteemed group of natural compounds, which display significant biological activities. It is a productive strategy to expand the chemical space of these intriguing natural compounds for drug discovery. METHODS: We prepared a series of new derivatives bearing diverse skeletons and functionalities from the diterpenoid alkaloids deltaline and talatisamine based on a diversity-oriented synthesis strategy. The anti-inflammatory activity of these derivatives was initially screened and evaluated by the release of nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated RAW264.7 cells. Futhermore, the anti-inflammatory activity of the representative derivative 31a was validated in various inflammatory animal models, including phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice ear edema, LPS-stimulated acute kidney injury, and collagen-induced arthritis (CIA). RESULTS: It was found that several derivatives were able to suppress the secretion of NO, TNF-α, and IL-6 in LPS-activated RAW264.7 cells. Compound 31a, one of the representative derivatives named as deltanaline, demonstrated the strongest anti-inflammatory effects in LPS-activated macrophages and three different animal models of inflammatory diseases by inhibiting nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inducing autophagy. CONCLUSION: Deltanaline is a new structural compound derived from natural diterpenoid alkaloids, which may serve as a new lead compound for the treatment of inflammatory diseases.


Assuntos
Alcaloides , Diterpenos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Alcaloides/farmacologia , Células RAW 264.7 , Diterpenos/farmacologia , Óxido Nítrico/metabolismo
12.
J Med Chem ; 66(10): 6437-6462, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163340

RESUMO

Toll-like receptors (TLRs) are key components of the innate immune system and serve as a crucial link between innate and acquired immunity. In addition to immune function, TLRs are involved in other important pathological processes, including tumorigenesis. TLRs have dual regulatory effects on tumor immunity by activating nuclear factor κ-B signaling pathways, which induce tumor immune evasion or enhance the antitumor immune response. Therefore, TLRs have become a popular target for cancer prevention and treatment, and TLR agonists and antagonists offer considerable potential for drug development. The TLR7 agonist imiquimod (1) has been approved by the U.S. Food and Drug Administration as a treatment for malignant skin cancer. Herein, the structure, signaling pathways, and function of the TLR family are summarized, and the structure-activity relationships associated with TLR selective and multitarget modulators and their potential application in tumor therapy are systematically discussed.


Assuntos
Neoplasias , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Transdução de Sinais , Imiquimode , Adjuvantes Imunológicos , Neoplasias/terapia , Imunidade Inata
13.
J Med Chem ; 66(11): 7140-7161, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37234044

RESUMO

Cyclin-dependent kinase 5 (CDK5) protein plays an important role not only in the central nervous system but also in the periphery, including immune response, regulation of insulin secretion, and cancer development and progression. Consequently, targeting the CDK5 protein is a potential strategy for the treatment of many diseases, especially cancer and neurodegenerative diseases. To date, numerous pan-CDK inhibitors have entered clinical trials. Nevertheless, limited clinical efficacy and severe adverse effects have prompted the application of new techniques to optimize clinical efficacy and minimize adverse events. In this Perspective, we highlight the protein properties, biofunctions, relevant signaling pathways, and associations with cancer development and proliferation of CDK5, and analyze the clinical status of pan-CDK inhibitors and the preclinical status of CDK5-specific inhibitors. In addition, CDK5-selective inhibitors, protein-protein interaction inhibitors, proteolytic-targeting chimera (PROTAC) degraders, and dual-target CDK5 inhibitors are discussed.


Assuntos
Quinase 5 Dependente de Ciclina , Doenças Neurodegenerativas , Humanos , Química Farmacêutica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Descoberta de Drogas
14.
J Med Chem ; 66(8): 5719-5752, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042119

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for the treatment of non-small-cell lung cancer (NSCLC). Here, we report the identification, structure optimization, and structure-activity relationship studies of quinazoline derivatives as novel selective EGFR L858R/T790M inhibitors. The most promising compound, 28f, exhibited strong inhibitory activity against EGFR L858R/T790M (IC50 = 3.5 nM) and greater than 368-fold selectivity over EGFR WT (IC50 = 1290 nM), a 6.7-fold improvement over osimertinib. Furthermore, 28f effectively inhibited downstream signaling pathways and induced apoptosis in mutant cells. In the H1975 xenograft in vivo model, 28f exhibited a good tumor suppressive effect. Furthermore, the combination of 28f with the ACK1 inhibitor dasatinib produced synergistic antiproliferative efficacy with 28f in 28f-resistant cells and in vivo. In conclusion,28f could become a candidate drug for the treatment of NSCLC, and the combination of 28f and dasatinib is expected to overcome EGFR resistance.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células , Dasatinibe/farmacologia , Linhagem Celular Tumoral , Mutação , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia
15.
J Med Chem ; 66(5): 3588-3620, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802449

RESUMO

Herein, a series of quinazoline and heterocyclic fused pyrimidine analogues were designed and synthesized based on the X-ray co-crystal structure of lead compound 3a, showing efficacious antitumor activities. Two analogues, 15 and 27a, exhibited favorable antiproliferative activities, which were more potent than lead compound 3a by 10-fold in MCF-7 cells. In addition, 15 and 27a exhibited potent antitumor efficacy and tubulin polymerization inhibition in vitro. 15 reduced the average tumor volume by 80.30% (2 mg/kg) in the MCF-7 xenograft model and 75.36% (4 mg/kg) in the A2780/T xenograft model, respectively. Most importantly, supported by structural optimization and Mulliken charge calculation, X-ray co-crystal structures of compounds 15, 27a, and 27b in complex with tubulin were resolved. In summary, our research provided the rational design strategy of colchicine binding site inhibitors (CBSIs) based on X-ray crystallography with antiproliferation, antiangiogenesis, and anti-multidrug resistance properties.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Linhagem Celular Tumoral , Raios X , Desenho de Fármacos , Sítios de Ligação , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 248: 115104, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641861

RESUMO

To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.


Assuntos
Neoplasias , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de GTPase , GTP Fosfo-Hidrolases , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo , Neoplasias/tratamento farmacológico
18.
J Adv Res ; 51: 109-120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36347425

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES: To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS: The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-ß1 (TGF-ß1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS: The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-ß/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION: These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Camundongos , Animais , Niclosamida/efeitos adversos , Niclosamida/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Matriz Extracelular/metabolismo , Células Epiteliais Alveolares
19.
J Control Release ; 352: 313-327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272661

RESUMO

As an endogenous gasotransmitter, CO has achieved tremendous advances in cancer treatment through selectively killing cancer cells. However, the application of CO in tumor immunotherapy has not been reported and the tumor targeting delivery is still a tremendous challenge. Herein, thermosensitive boronic acid group-containing CO prodrug was synthesized and fabricated with tannic acid (TA) and iron (Fe) to form metal-phenolic networks, and then loaded with near-infrared (NIR) photothermal agent IR820 to form FeCO-IR820@FeIIITA for combinational therapy of CO and photothermal therapy. Ferroptosis can also be enhanced due to the Fe3+ incorporation. After TA reduced Fe3+ into Fe2+, Fe2+ might lead to intracellular Fenton reaction. Furthermore, in combination with CTLA-4 blockade immunotherapy, FeCO-IR820@FeIIITA remarkably inhibited breast tumor growth, suppressed the lung metastasis and improved the antitumor immune response. To summarize, FeCO-IR820@FeIIITA provides a potential novel option for CO/photothermal/immune synergistic therapy with enhanced ferroptosis through simple compositions and facile synthesis process.


Assuntos
Neoplasias da Mama , Ferroptose , Hipertermia Induzida , Nanopartículas , Humanos , Feminino , Fototerapia , Terapia Combinada , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
20.
Eur J Med Chem ; 244: 114842, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274274

RESUMO

Protein arginine methyltransferases 5 (PRMT5), a therapeutic target whose main physiological function is mono- and symmetric dimethylation of arginine, has drawn significant attention from researchers in the field. PRMT5 has been reported to participate in many cellular functions including cell growth, migration, and development. Upregulation of PRMT5 occurs in different kinds of tumors and is strongly associated with poor prognosis. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers, such as advanced or recurrent solid tumors with MTAP deletion. Herein, we reviewed the binding modes and structure-activity relationships of novel PRMT5 inhibitors and discussed prospects of PRMT5 inhibitors in cancer therapy, aiming to provide insights on drug development of PRMT5 inhibitors.


Assuntos
Inibidores Enzimáticos , Terapia de Alvo Molecular , Neoplasias , Proteína-Arginina N-Metiltransferases , Humanos , Arginina/metabolismo , Química Farmacêutica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA